<table>
<thead>
<tr>
<th>Material</th>
<th>Material</th>
<th>Seite / Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stahl</td>
<td>Steel</td>
<td>8.1.1 – 8.1.4</td>
</tr>
<tr>
<td>Gußeisen / Roheisen</td>
<td>Cast Iron / Pig Iron</td>
<td>8.2.1</td>
</tr>
<tr>
<td>Metal. Karbide / Ferrolegierungen</td>
<td>Metal Carbides / Ferro Alloys</td>
<td>8.2.2</td>
</tr>
<tr>
<td>Nichteisenmetalle</td>
<td>Non-Ferrous Metals</td>
<td>8.3.1 – 8.3.2</td>
</tr>
<tr>
<td>Pflanzen</td>
<td>Plants</td>
<td>8.4.1</td>
</tr>
</tbody>
</table>
O, N, H, C, S in Stahl (Steel)

<table>
<thead>
<tr>
<th>CRM</th>
<th>O</th>
<th>N</th>
<th>H</th>
<th>C</th>
<th>S</th>
<th>Einheit Unit</th>
<th>Pack.</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1754</td>
<td>0.0024</td>
<td>0.0081</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>1</td>
<td>Stab, 9.5x9.5x10.2 mm, Stahl, niedr. leg. (Rod, Steel, low alloy)</td>
</tr>
<tr>
<td>3 166c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0078</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Edelstahl (Stainless Steel)</td>
</tr>
<tr>
<td>3 1090</td>
<td>0.0491</td>
<td>(0.0060)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>1</td>
<td>Stab, Ø 0.635x10.2 cm Armcoeisen (Rod, Ingot Iron)</td>
</tr>
<tr>
<td>3 1091a</td>
<td>0.01322</td>
<td>(0.0876)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>1</td>
<td>Stab, Edelstahl (Rod, Stainless Steel)</td>
</tr>
<tr>
<td>3 1093</td>
<td>0.0060</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>1</td>
<td>Stab, Stahl, hoch leg. (Rod, Steel, high alloy)</td>
</tr>
<tr>
<td>3 1094</td>
<td>0.00045</td>
<td>(0.0071)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>1</td>
<td>Stab, Stahl, hoch leg. (Rod, Steel, high alloy)</td>
</tr>
<tr>
<td>5 318A</td>
<td>0.0096</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>2</td>
<td>Stab, Ø 6.35x95 mm, Stahl, unleg. (Rod, Steel, unalloyed)</td>
</tr>
<tr>
<td>5 318B</td>
<td>0.0103</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>1</td>
<td>Stab, Ø 12.7x127 mm, Stahl, unleg. (Rod, Steel, unalloyed)</td>
</tr>
<tr>
<td>9 GS1d</td>
<td>0.00354</td>
<td>(0.0200)</td>
<td>(0.00016)</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>8</td>
<td>Stab, Ø 5x230 mm, Edelstahl (Rod, Stainless Steel)</td>
</tr>
<tr>
<td>9 GS5e</td>
<td>0.00048</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>8</td>
<td>Stab, Ø 6x230 mm, Edelstahl (Rod, Stainless Steel)</td>
</tr>
<tr>
<td>EC 026-1</td>
<td>0.0031</td>
<td>0.0053</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>2</td>
<td>Pin, Ø 8x100 mm/90-100 g, Stahl, unleg. (Steel, unalloyed)</td>
</tr>
<tr>
<td>EC 026-2</td>
<td>0.0025</td>
<td>0.0042</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>3</td>
<td>Pin, Ø 8x100 mm/90-100 g, Stahl, unleg. (Steel, unalloyed)</td>
</tr>
<tr>
<td>EC 027-1</td>
<td>0.0084</td>
<td>0.0157</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>3</td>
<td>Pin, Ø 8x100 mm/90-100 g, Stahl, unleg. (Steel, unalloyed)</td>
</tr>
<tr>
<td>EC 028-1</td>
<td>0.0113</td>
<td>0.0029</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>3</td>
<td>Pin, Ø 8x100 mm/90-100 g, Stahl, unleg. (Steel, unalloyed)</td>
</tr>
<tr>
<td>EC 029-1</td>
<td>0.0312</td>
<td>0.0083</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>3</td>
<td>Pin, Ø 8x100 mm/90-100 g, Stahl, unleg. (Steel, unalloyed)</td>
</tr>
<tr>
<td>EC 089-1</td>
<td>0.0008</td>
<td>0.0078</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>1g Ball, Gold plat., Kugellagerstahl (Ball Bearing Steel)</td>
</tr>
<tr>
<td>EC 284-2</td>
<td>0.0099</td>
<td>0.0151</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Edelstahl (Stainless Steel)</td>
</tr>
<tr>
<td>EC 285-1</td>
<td>0.0066</td>
<td>0.0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Edelstahl (Stainless Steel)</td>
</tr>
<tr>
<td>VS U10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.035</td>
<td>0.0116</td>
<td>%</td>
<td>100g</td>
<td>Chip, Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>VS U11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.119</td>
<td>0.027</td>
<td>%</td>
<td>100g</td>
<td>Chip, Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>VS U12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.221</td>
<td>0.0197</td>
<td>%</td>
<td>100g</td>
<td>Chip, Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>VS U13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.089</td>
<td>0.0070</td>
<td>%</td>
<td>100g</td>
<td>Chip, Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>VS U14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0023</td>
<td>0.0056</td>
<td>%</td>
<td>100g</td>
<td>Chip, Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>VS U15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.219</td>
<td>0.0200</td>
<td>%</td>
<td>100g</td>
<td>Chip, Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>VS U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0383</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>VS U17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.086</td>
<td>0.128</td>
<td>%</td>
<td>100g</td>
<td>Chip, Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>VS 7-2</td>
<td>-</td>
<td>0.0037</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>VS 7-3</td>
<td>-</td>
<td>0.0096</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>VS 7-4</td>
<td>-</td>
<td>0.0161</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>VS 7-5</td>
<td>-</td>
<td>0.0241</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>VS C31</td>
<td>-</td>
<td>0.0513</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, hoch leg. (Steel, high alloy)</td>
</tr>
<tr>
<td>VS C41</td>
<td>-</td>
<td>0.166</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, hoch leg. (Steel, high alloy)</td>
</tr>
<tr>
<td>VS C44</td>
<td>-</td>
<td>0.233</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, hoch leg. (Steel, high alloy)</td>
</tr>
<tr>
<td>VS C36</td>
<td>-</td>
<td>0.397</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, hoch leg. (Steel, high alloy)</td>
</tr>
<tr>
<td>CRM</td>
<td>O</td>
<td>N</td>
<td>H</td>
<td>C</td>
<td>S</td>
<td>Einheit</td>
<td>Pack.</td>
<td>Form</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>CI NS2002a</td>
<td>-</td>
<td>-</td>
<td>0.00065</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>20g</td>
<td>1g Ball, Ø 6.350 mm Stahl (Steel)</td>
</tr>
<tr>
<td>CI NS2006b</td>
<td>-</td>
<td>-</td>
<td>0.00025</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>20g</td>
<td>1g Ball, Ø 6.350 mm Stahl (Steel)</td>
</tr>
<tr>
<td>CI NS20025a</td>
<td>-</td>
<td>-</td>
<td>0.00133</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>20g</td>
<td>1g Ball Stahl Steel)</td>
</tr>
<tr>
<td>CI NS20031</td>
<td>-</td>
<td>-</td>
<td>0.00021</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>20g</td>
<td>2.96 g Ball Stahl (Steel)</td>
</tr>
<tr>
<td>CI NS20034</td>
<td>-</td>
<td>-</td>
<td>0.00017</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>50g</td>
<td>5g Pin, Edelstahl (Stainless Steel)</td>
</tr>
<tr>
<td>CI NS14001</td>
<td>0.0081</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl (Steel)</td>
</tr>
<tr>
<td>CI NS14002</td>
<td>0.0040</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl (Steel)</td>
</tr>
<tr>
<td>CI NS14003</td>
<td>0.0048</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl (Steel)</td>
</tr>
<tr>
<td>CI NS20035</td>
<td>0.00229</td>
<td>0.01012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>60g</td>
<td>Pin, Ø 5.5x300 mm Stahl (Steel)</td>
</tr>
<tr>
<td>CI NS20036</td>
<td>0.00511</td>
<td>0.00677</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>60g</td>
<td>Pin, Ø 5.5x300 mm Stahl (Steel)</td>
</tr>
<tr>
<td>CI NS20037</td>
<td>0.00107</td>
<td>0.00595</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>60g</td>
<td>Pin, Ø 5.5x300 mm Stahl (Steel)</td>
</tr>
<tr>
<td>CI NS22005</td>
<td>0.0074</td>
<td>0.0351</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>50g</td>
<td>1g Ball, Ø 6.35 mm Edelstahl (Stainless Steel)</td>
</tr>
<tr>
<td>CI NS22006</td>
<td>0.0048</td>
<td>0.0454</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>50g</td>
<td>1g Ball, Ø 6.35 mm Edelstahl (Stainless Steel)</td>
</tr>
<tr>
<td>CI NS22007</td>
<td>0.0133</td>
<td>0.0118</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>50g</td>
<td>1g Ball, Ø 6.35 mm Edelstahl (Stainless Steel)</td>
</tr>
<tr>
<td>CI NS22008</td>
<td>0.0022</td>
<td>0.0070</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>50g</td>
<td>1g Ball, Ø 6.35 mm Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>CI NS22009</td>
<td>0.0088</td>
<td>0.0032</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>50g</td>
<td>1g Ball, Ø 6.35 mm Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>CI NS22010</td>
<td>0.0115</td>
<td>0.0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>50g</td>
<td>1g Ball, Ø 6.35 mm Kohlenstoffstahl (Carbon Steel)</td>
</tr>
<tr>
<td>CI NS28033</td>
<td>-</td>
<td>-</td>
<td>0.00065</td>
<td>0.00045</td>
<td>%</td>
<td>100g</td>
<td>Chip, Reineisen (Pure Iron)</td>
<td></td>
</tr>
<tr>
<td>CI NS28034</td>
<td>-</td>
<td>-</td>
<td>0.0016</td>
<td>0.0058</td>
<td>%</td>
<td>100g</td>
<td>Chip, Reineisen (Pure Iron)</td>
<td></td>
</tr>
<tr>
<td>CI NS28035</td>
<td>-</td>
<td>-</td>
<td>0.012</td>
<td>0.0069</td>
<td>%</td>
<td>100g</td>
<td>Chip, Reineisen (Pure Iron)</td>
<td></td>
</tr>
</tbody>
</table>

F 100-1
38.1 35.7
- -
- -
ug/g 250
Ø 3.97, 0.2547g, Ball Stahl, niedr. leg, goldplatiert (Steel, low alloy, gold plated)

F 200S-1
89.8 312
- -
- -
ug/g 250
Ø 5.00, 0.5188g, Ball Stahl, hoch leg, goldplatiert (Steel, high alloy, gold plated)

IT IW1-02
- -
0.131 0.020
- -
% 100g
Chip, Cr18Ni19

IT IW1-04
- -
0.072 0.012
- -
% 100g
Chip, Ni13

IT IW1-05
- -
0.11 0.018
- -
% 100g
Chip, Kohlenstoffstahl (Carbon Steel)

IT IW2-01
- -
0.0095 -
- -
% 100g
Chip, Kohlenstoffstahl (Carbon Steel)

IT IW2-03
- -
0.0170 -
- -
% 100g
Chip, Kohlenstoffstahl (Carbon Steel)

IT IW2-04
- -
0.0190 -
- -
% 100g
Chip, Kohlenstoffstahl (Carbon Steel)

IT IW2-05
- -
0.0033 -
- -
% 100g
Chip, Armcoeisen (Armco Iron)

IT IW2-06
- -
0.0410 -
- -
% 100g
Chip, Cr13

IT IW2-07
- -
0.0400 -
- -
% 100g
Chip, Cr17Ni11

IT IW2-08
- -
0.0200 -
- -
% 100g
Chip, Cr10Ni20

IT IW2-09
- -
0.0220 -
- -
% 100g
Chip, Cr18Ni10
O, N, H, C, S in Stahl (Steel)

<table>
<thead>
<tr>
<th>CRM</th>
<th>O</th>
<th>N</th>
<th>H</th>
<th>C</th>
<th>S</th>
<th>Einheit</th>
<th>Pack.</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 31</td>
<td>0.0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>1</td>
<td>Pin, Ø 8-12x500 mm</td>
</tr>
<tr>
<td>J 32</td>
<td>0.0028</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>1</td>
<td>Pin, Ø 8-12x500 mm</td>
</tr>
<tr>
<td>J 34</td>
<td>0.0068</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>1</td>
<td>Pin, Ø 8-12x500 mm</td>
</tr>
<tr>
<td>J 35</td>
<td>0.0198</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>1</td>
<td>Pin, Ø 8-12x500 mm</td>
</tr>
<tr>
<td>J 36</td>
<td>-</td>
<td>0.0337</td>
<td>-</td>
<td>0.0125</td>
<td>0.0126</td>
<td>%</td>
<td>150g</td>
<td>Chip</td>
</tr>
<tr>
<td>J 40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0344</td>
<td>0.793</td>
<td>0.200</td>
<td>%</td>
<td>150g Chip</td>
</tr>
</tbody>
</table>

| J 37 | - | - | - | - | 0.0002 | 0.00016 | % | 250g Chip |
| J 38 | - | - | - | - | 0.0003 | 0.00024 | % | 250g Chip |

| J 39 | - | - | - | - | 0.0005 | 0.00034 | % | 250g Chip |

| J 40 | - | - | - | - | 0.0006 | 0.00038 | % | 250g Chip |

| J 41 | - | - | - | - | 0.0009 | 0.00052 | % | 250g Chip |

| J 42 | - | - | - | - | 0.0012 | 0.00079 | % | 250g Chip |

| J 43 | - | - | - | - | 0.0018 | 0.00117 | % | 250g Chip |

O, N, H, C, S in Stahl (Steel)

<table>
<thead>
<tr>
<th>RM</th>
<th>O</th>
<th>N</th>
<th>H</th>
<th>C</th>
<th>S</th>
<th>Einheit</th>
<th>Pack.</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSN2-1</td>
<td>-</td>
<td>0.064</td>
<td>-</td>
<td>0.476</td>
<td>0.034</td>
<td>%</td>
<td>500g</td>
<td>Ig Pin, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>CSN2-2</td>
<td>-</td>
<td>0.076</td>
<td>-</td>
<td>0.548</td>
<td>0.028</td>
<td>%</td>
<td>500g</td>
<td>Ig Pin, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>CSN3</td>
<td>-</td>
<td>0.0047</td>
<td>-</td>
<td>0.892</td>
<td>0.0035</td>
<td>%</td>
<td>500g</td>
<td>Ig Pin, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>CSN4</td>
<td>-</td>
<td>0.026</td>
<td>-</td>
<td>0.011</td>
<td>0.0008</td>
<td>%</td>
<td>500g</td>
<td>Ig Pin, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>CSN2A</td>
<td>-</td>
<td>0.0081</td>
<td>-</td>
<td>0.068</td>
<td>0.305</td>
<td>%</td>
<td>100g</td>
<td>Ig Pin, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>CSN3A</td>
<td>0.0044</td>
<td>0.0365</td>
<td>0.0027</td>
<td>0.050</td>
<td>0.0040</td>
<td>%</td>
<td>250g</td>
<td>Ig Pin, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>CSN4A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.050</td>
<td>0.0040</td>
<td>%</td>
<td>500g</td>
<td>Ig Pin, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>CSN626</td>
<td>-</td>
<td>0.0064</td>
<td>-</td>
<td>0.068</td>
<td>0.020</td>
<td>%</td>
<td>500g</td>
<td>Ig Pin, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>CSN3A</td>
<td>-</td>
<td>0.0081</td>
<td>-</td>
<td>0.068</td>
<td>0.305</td>
<td>%</td>
<td>100g</td>
<td>Ig Pin, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
</tbody>
</table>

O, N, H, C, S in Stahl (Steel)

<table>
<thead>
<tr>
<th>CRM</th>
<th>O</th>
<th>N</th>
<th>H</th>
<th>C</th>
<th>S</th>
<th>Einheit</th>
<th>Pack.</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR 644</td>
<td>0.0069</td>
<td>0.0064</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Ig Pin</td>
</tr>
<tr>
<td>BR 192</td>
<td>-</td>
<td>0.1743</td>
<td>0.0235</td>
<td>0.0032</td>
<td>%</td>
<td>100g</td>
<td>Chip</td>
<td></td>
</tr>
</tbody>
</table>

Referenzmaterial für Verbrennungsanalyse - Stahl

(Reference Material for Combustion Analysis - Steel)
Referenzmaterial für Verbrennungsanalyse - Stahl

8.1.4

N, C + S in Stahl (Steel)

<table>
<thead>
<tr>
<th>CRM</th>
<th>N</th>
<th>C</th>
<th>S</th>
<th>Einheit</th>
<th>Pack.</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH 1031</td>
<td>-</td>
<td>0.0674</td>
<td>0.403</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1036-2</td>
<td>0.0034</td>
<td>0.0791</td>
<td>0.321</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1037</td>
<td>-</td>
<td>0.194</td>
<td>0.0134</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1038</td>
<td>-</td>
<td>0.0823</td>
<td>0.247</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1041</td>
<td>-</td>
<td>0.0925</td>
<td>0.0180</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1034</td>
<td>0.0170</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1002-3</td>
<td>0.0088</td>
<td>0.4757</td>
<td>0.0526</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1006-4</td>
<td>0.0046</td>
<td>0.952</td>
<td>0.0111</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1007-3</td>
<td>0.0031</td>
<td>0.787</td>
<td>0.0137</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1008-3</td>
<td>0.0053</td>
<td>0.163</td>
<td>0.0063</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1009-2</td>
<td>0.0064</td>
<td>0.0875</td>
<td>0.0202</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1010-2</td>
<td>0.0034</td>
<td>0.145</td>
<td>0.0136</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1013-2</td>
<td>0.0142</td>
<td>0.384</td>
<td>0.0344</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1017-2</td>
<td>0.0031</td>
<td>0.0146</td>
<td>0.0094</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1018-2</td>
<td>0.0065</td>
<td>0.573</td>
<td>0.0019</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1019-4</td>
<td>0.0046</td>
<td>0.0200</td>
<td>0.0133</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1027-2</td>
<td>0.0030</td>
<td>0.7260</td>
<td>0.0092</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1036-2</td>
<td>0.0034</td>
<td>0.0791</td>
<td>0.321</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1039-2</td>
<td>0.0027</td>
<td>0.0352</td>
<td>0.0222</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1040</td>
<td>0.0011</td>
<td>0.0504</td>
<td>0.0051</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1042</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1042-2</td>
<td>0.0087</td>
<td>0.0778</td>
<td>0.0227</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1043-3</td>
<td>0.00017</td>
<td>0.00019</td>
<td>0.00008</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1046-2</td>
<td>0.0007</td>
<td>0.0003</td>
<td>0.0016</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
</tbody>
</table>

N, C, S, P in Stahl (Steel)

<table>
<thead>
<tr>
<th>RM</th>
<th>N</th>
<th>C</th>
<th>S</th>
<th>P</th>
<th>Einheit</th>
<th>Pack.</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH 1016</td>
<td>0.0067</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1026</td>
<td>0.0136</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0306</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>TH 1040</td>
<td>0.0011</td>
<td>0.0504</td>
<td>0.0051</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Chip, Stahl, niedr. leg. (Steel, low alloy)</td>
</tr>
<tr>
<td>CT 088A</td>
<td>-</td>
<td>0.0151</td>
<td>0.00045</td>
<td>_</td>
<td>%</td>
<td>200g</td>
<td>Pins, T-302 HQ Stahl; Steel</td>
</tr>
</tbody>
</table>
O, N, H, C, S in Stahl (Steel)

<table>
<thead>
<tr>
<th>RM</th>
<th>O</th>
<th>N</th>
<th>H</th>
<th>C</th>
<th>S</th>
<th>Einheit</th>
<th>Pack.</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR 546</td>
<td>-</td>
<td>-</td>
<td>0.61</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>100g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 555</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>100g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 556</td>
<td>-</td>
<td>-</td>
<td>5.75</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>100g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 557</td>
<td>18</td>
<td>425</td>
<td>3.7</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>50g</td>
<td>1g Ball</td>
</tr>
<tr>
<td>AR 654</td>
<td>71</td>
<td>327</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>50g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 655</td>
<td>21</td>
<td>3896</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>50g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 656</td>
<td>71</td>
<td>213</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>50g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 657</td>
<td>77</td>
<td>91</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>50g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 659</td>
<td>158</td>
<td>72</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>50g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 660</td>
<td>57</td>
<td>61</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>50g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 661</td>
<td>6</td>
<td>308</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>50g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 662</td>
<td>36</td>
<td>684</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>50g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 663</td>
<td>43</td>
<td>1790</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>50g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 668</td>
<td>14</td>
<td>34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>50g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 669</td>
<td>291</td>
<td>658</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>50g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 644</td>
<td>3</td>
<td>171</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>100g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 645</td>
<td>60</td>
<td>58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>100g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 646</td>
<td>31</td>
<td>677</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>100g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 1647</td>
<td>41</td>
<td>1797</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>100g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 1648</td>
<td>180</td>
<td>73</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>100g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 1650</td>
<td>54</td>
<td>97</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>100g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 1651</td>
<td>64</td>
<td>213</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>100g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 1652</td>
<td>54</td>
<td>532</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>100g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 1653</td>
<td>14</td>
<td>34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>µg/g</td>
<td>100g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 673</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0011</td>
<td>0.0013</td>
<td>%</td>
<td>454g</td>
<td>Chip</td>
</tr>
<tr>
<td>AR 881</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.020</td>
<td>0.004</td>
<td>%</td>
<td>454g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 882</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.056</td>
<td>0.022</td>
<td>%</td>
<td>454g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 883</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.198</td>
<td>0.023</td>
<td>%</td>
<td>454g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 884</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.472</td>
<td>0.072</td>
<td>%</td>
<td>454g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 885</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.971</td>
<td>0.018</td>
<td>%</td>
<td>454g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 886</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.683</td>
<td>0.016</td>
<td>%</td>
<td>454g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 888</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.060</td>
<td>0.224</td>
<td>%</td>
<td>454g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 889</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.30</td>
<td>0.014</td>
<td>%</td>
<td>454g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 890</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.102</td>
<td>0.027</td>
<td>%</td>
<td>454g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 891</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.045</td>
<td>0.027</td>
<td>%</td>
<td>454g</td>
<td>1g Pin</td>
</tr>
<tr>
<td>AR 510</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.50</td>
<td>0.075</td>
<td>%</td>
<td>250g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 511</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.06</td>
<td>0.23</td>
<td>%</td>
<td>250g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 512</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.05</td>
<td>0.37</td>
<td>%</td>
<td>250g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>AR 870</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.035</td>
<td>0.022</td>
<td>%</td>
<td>454g</td>
<td>1g Ring, Sn-plat.</td>
</tr>
<tr>
<td>AR 871</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.050</td>
<td>0.012</td>
<td>%</td>
<td>454g</td>
<td>1g Ring, Sn-plat.</td>
</tr>
<tr>
<td>AR 872</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.172</td>
<td>0.007</td>
<td>%</td>
<td>454g</td>
<td>1g Ring, Sn-plat.</td>
</tr>
<tr>
<td>AR 873</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.383</td>
<td>0.007</td>
<td>%</td>
<td>454g</td>
<td>1g Ring, Sn-plat.</td>
</tr>
<tr>
<td>AR 874</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.697</td>
<td>0.007</td>
<td>%</td>
<td>454g</td>
<td>1g Ring, Sn-plat.</td>
</tr>
<tr>
<td>AR 875</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.855</td>
<td>0.010</td>
<td>%</td>
<td>454g</td>
<td>1g Ring, Sn-plat.</td>
</tr>
</tbody>
</table>
O, N, H, C, S in Stahl (Steel)

<table>
<thead>
<tr>
<th>RM</th>
<th>O*</th>
<th>N*</th>
<th>H*</th>
<th>C*</th>
<th>S*</th>
<th>Einheit</th>
<th>Pack.</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR 950</td>
<td>-</td>
<td>0.0016</td>
<td>-</td>
<td>0.071</td>
<td>0.013</td>
<td>%</td>
<td>150g</td>
<td>Chip, Kohlenstoffstahl (Type 1005 Plain Carbon)</td>
</tr>
<tr>
<td>AR 951</td>
<td>-</td>
<td>0.0087</td>
<td>-</td>
<td>0.176</td>
<td>0.024</td>
<td>%</td>
<td>150g</td>
<td>Chip, Kohlenstoffstahl (Type 1018 Plain Carbon)</td>
</tr>
<tr>
<td>AR 952</td>
<td>-</td>
<td>0.0012</td>
<td>-</td>
<td>0.493</td>
<td>0.039</td>
<td>%</td>
<td>150g</td>
<td>Chip, Kohlenstoffstahl (Type 1045 Plain Carbon)</td>
</tr>
<tr>
<td>AR 953</td>
<td>-</td>
<td>0.0101</td>
<td>-</td>
<td>1.00</td>
<td>0.008</td>
<td>%</td>
<td>150g</td>
<td>Chip, Kohlenstoffstahl (Type 1095 Plain Carbon)</td>
</tr>
<tr>
<td>AR 954</td>
<td>-</td>
<td>0.0064</td>
<td>-</td>
<td>0.391</td>
<td>0.022</td>
<td>%</td>
<td>150g</td>
<td>Chip, Stahl, niedr. leg. (Type 4340 Low Alloy)</td>
</tr>
<tr>
<td>AR 955</td>
<td>-</td>
<td>0.0090</td>
<td>-</td>
<td>0.201</td>
<td>0.021</td>
<td>%</td>
<td>150g</td>
<td>Chip, Stahl, niedr. leg. (Type 8620 Low Alloy)</td>
</tr>
<tr>
<td>AR 956</td>
<td>-</td>
<td>0.0065</td>
<td>-</td>
<td>0.468</td>
<td>0.286</td>
<td>%</td>
<td>150g</td>
<td>Chip, Stahl, niedr. leg. (Type 1144 Low Alloy)</td>
</tr>
<tr>
<td>AR 957</td>
<td>-</td>
<td>0.0088</td>
<td>-</td>
<td>0.188</td>
<td>0.092</td>
<td>%</td>
<td>150g</td>
<td>Chip, Stahl, niedr. leg. (Type 1117 Low Alloy)</td>
</tr>
<tr>
<td>AR 958</td>
<td>-</td>
<td>0.0054</td>
<td>-</td>
<td>0.057</td>
<td>0.031</td>
<td>%</td>
<td>150g</td>
<td>Chip, Stahl, hoch leg. (Type 3040 Stainless)</td>
</tr>
<tr>
<td>AR 959</td>
<td>-</td>
<td>0.0800</td>
<td>-</td>
<td>0.060</td>
<td>0.020</td>
<td>%</td>
<td>150g</td>
<td>Chip, Stahl, hoch leg. (Type 316 Stainless)</td>
</tr>
<tr>
<td>AR 960</td>
<td>-</td>
<td>0.0401</td>
<td>-</td>
<td>0.103</td>
<td>0.0005</td>
<td>%</td>
<td>150g</td>
<td>Chip, Stahl, hoch leg. (Type 4100 Stainless)</td>
</tr>
<tr>
<td>AR 961</td>
<td>-</td>
<td>0.0499</td>
<td>-</td>
<td>0.0188</td>
<td>0.0161</td>
<td>%</td>
<td>150g</td>
<td>Chip, Stahl, hoch leg. (Type 316L Stainless)</td>
</tr>
</tbody>
</table>

O, N, H, C, S in Stahl (Steel)

<table>
<thead>
<tr>
<th>RM</th>
<th>O*</th>
<th>N*</th>
<th>H*</th>
<th>Einheit</th>
<th>Pack.</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1011</td>
<td>-</td>
<td>-</td>
<td>wg/g</td>
<td>50g</td>
<td>0.5g Pin</td>
</tr>
<tr>
<td>9</td>
<td>110</td>
<td>15</td>
<td>-</td>
<td>wg/g</td>
<td>100g</td>
<td>1.0g Pin (Ø 5x6.5 mm) No certificate, values on bottle</td>
</tr>
<tr>
<td>9</td>
<td>175</td>
<td>60</td>
<td>-</td>
<td>wg/g</td>
<td>100g</td>
<td>1.0g Pin (Ø 5x6.5 mm)</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>140</td>
<td>-</td>
<td>wg/g</td>
<td>100g</td>
<td>1.0g Pin (Ø 5x6.5 mm)</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>wg/g</td>
<td>100g</td>
<td>10g Stab/Rod (Ø 4x100 mm)</td>
</tr>
</tbody>
</table>
C + S in Gußeisen (Cast Iron)

<table>
<thead>
<tr>
<th>*</th>
<th>C</th>
<th>S</th>
<th>Einheit</th>
<th>Pack.</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS CH5</td>
<td>2.40</td>
<td>0.0052</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>AR 301</td>
<td>2.26</td>
<td>0.010</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>VS CH7</td>
<td>2.62</td>
<td>0.025</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>VS CH1</td>
<td>3.21</td>
<td>0.021</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>VS CH16</td>
<td>2.64</td>
<td>0.049</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>AR 305</td>
<td>2.75</td>
<td>0.015</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>J 334</td>
<td>2.83</td>
<td>0.043</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>VS CH8</td>
<td>3.25</td>
<td>0.0095</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>GB 01118</td>
<td>2.88</td>
<td>0.142</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>VS CH6</td>
<td>2.93</td>
<td>0.037</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>VS CH15</td>
<td>3.04</td>
<td>0.040</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>GB 01117</td>
<td>3.08</td>
<td>0.021</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>BR K3</td>
<td>3.10</td>
<td>0.120</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>GB 01114</td>
<td>3.16</td>
<td>0.123</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>TH 1048</td>
<td>3.194</td>
<td>0.042</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>AR 319</td>
<td>3.28</td>
<td>0.055</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>AR 322</td>
<td>3.37</td>
<td>0.046</td>
<td>250g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>TH 1050</td>
<td>3.424</td>
<td>0.143</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>GB 01116</td>
<td>3.43</td>
<td>0.074</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>AR 306</td>
<td>3.53</td>
<td>0.013</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>AR 302</td>
<td>3.55</td>
<td>0.045</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>VS CH10</td>
<td>3.62</td>
<td>0.076</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>VS CH2</td>
<td>3.62</td>
<td>0.069</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>TH 1023-2</td>
<td>3.62</td>
<td>0.0206</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>GB 01111</td>
<td>3.64</td>
<td>0.016</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>AR 309</td>
<td>3.70</td>
<td>0.015</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>VS CH14</td>
<td>3.81</td>
<td>0.034</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>AR 323</td>
<td>3.81</td>
<td>0.064</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>VS CH9</td>
<td>3.84</td>
<td>0.122</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>GB 01112</td>
<td>3.87</td>
<td>0.044</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>AR 303</td>
<td>3.90</td>
<td>0.013</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>AR 310</td>
<td>3.95</td>
<td>0.105</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>GB 01115</td>
<td>4.11</td>
<td>0.029</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>AR 304</td>
<td>4.15</td>
<td>0.014</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>VS CH13</td>
<td>4.16</td>
<td>0.034</td>
<td>100g</td>
<td>Pulver, gekörnt, in Argon verdüst (Powder, coarse, Argon sprayed)</td>
<td></td>
</tr>
<tr>
<td>GB 01113</td>
<td>4.18</td>
<td>0.058</td>
<td>150g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>VS CH12</td>
<td>4.33</td>
<td>0.0101</td>
<td>100g</td>
<td>Pulver, gekörnt, in Argon verdüst (Powder, coarse, Argon sprayed)</td>
<td></td>
</tr>
<tr>
<td>TH 1047</td>
<td>4.47</td>
<td>0.093</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>VS CH11</td>
<td>4.50</td>
<td>0.030</td>
<td>100g</td>
<td>Pulver (powder)</td>
<td></td>
</tr>
<tr>
<td>TH 1049-2</td>
<td>4.823</td>
<td>0.0022</td>
<td>100g</td>
<td>Pulver, (powder)</td>
<td></td>
</tr>
</tbody>
</table>

* Proben mit Präfix 3, GB und VS sind CRM-Proben, alle anderen RM-Proben
(Samples with prefix 3, GB and VS are CRM-samples, all others are RM-samples)
C + S + weitere Elemente in Karbiden (Carbides)

<table>
<thead>
<tr>
<th>CRM</th>
<th>C (tot)</th>
<th>C (graph)</th>
<th>S</th>
<th>O</th>
<th>Fe</th>
<th>Ta</th>
<th>Nb</th>
<th>Einheit</th>
<th>Pack.</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 352/1</td>
<td>6.154</td>
<td>0.036</td>
<td>-</td>
<td>-</td>
<td>0.0029</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Pulver (Powder), Wolframkarbid (Tungsten Carbide)</td>
</tr>
<tr>
<td>GB 02801</td>
<td>6.10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>100g</td>
<td>Pulver (Powder), Wolframkarbid (Tungsten Carbide)</td>
</tr>
<tr>
<td>H 102</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>185</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>mg/g</td>
<td>2-3g</td>
<td>Ampulle, verschl. (Sealed Vial), Wolframkarbid (Tungsten Carbide)</td>
</tr>
</tbody>
</table>

N in Ferroleg. (Ferro-Alloys)

<table>
<thead>
<tr>
<th>CRM</th>
<th>N</th>
<th>Einheit</th>
<th>Pack.</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS F30/3</td>
<td>0.68</td>
<td>%</td>
<td>100g</td>
<td>Pulver (Powder) FeTi</td>
</tr>
<tr>
<td>VS F15/1</td>
<td>1.78</td>
<td>%</td>
<td>100g</td>
<td>Pulver (Powder) FeCr</td>
</tr>
<tr>
<td>VS F32/1</td>
<td>7.5</td>
<td>%</td>
<td>100g</td>
<td>Pulver (Powder) FeV</td>
</tr>
</tbody>
</table>
O, N, H, C, S in Nichteisen-Metallen (Non-Ferrous Metals)

<table>
<thead>
<tr>
<th>CRM</th>
<th>O</th>
<th>N</th>
<th>H</th>
<th>C</th>
<th>S</th>
<th>B</th>
<th>P</th>
<th>Einheit</th>
<th>Pack.</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM Cu50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>49.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>250g</td>
<td>Chip (Copper)</td>
</tr>
<tr>
<td>IM Cu90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>83.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>250g</td>
<td>Chip (Copper)</td>
</tr>
<tr>
<td>H 017A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.4</td>
<td>7.0</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>50g</td>
<td>Scheibe (disc), Ø 40x30 mm (Copper)</td>
</tr>
<tr>
<td>H 017B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.4</td>
<td>7.0</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>50g</td>
<td>Chip (Copper)</td>
</tr>
<tr>
<td>CI NS41002</td>
<td>2.72</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>23g</td>
<td>Chip (Copper)</td>
</tr>
<tr>
<td>CI NS41004</td>
<td>4.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>23g</td>
<td>Chip (Copper)</td>
</tr>
<tr>
<td>CI NS41003</td>
<td>8.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>23g</td>
<td>Chip (Copper)</td>
</tr>
<tr>
<td>H 022A</td>
<td>138</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>1</td>
<td>Scheibe (disc), Ø 26x9 mm (Copper)</td>
</tr>
<tr>
<td>H 022B</td>
<td>138</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>1</td>
<td>Pin, Ø 9x50 mm (Copper)</td>
</tr>
<tr>
<td>H 054R</td>
<td>0.47</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>1</td>
<td>Pin, Ø 7x50 mm (Copper)</td>
</tr>
<tr>
<td>IM Cu10/1</td>
<td>3.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>240g</td>
<td>Stäbe (rods) (Copper)</td>
</tr>
<tr>
<td>IM Cu100</td>
<td>123</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>200g</td>
<td>Pin, Ø 20x11.5 mm (Copper)</td>
</tr>
<tr>
<td>IM Cu100-5</td>
<td>163.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>150g</td>
<td>Stäbe (rods), Ø 5x100 mm (Copper)</td>
</tr>
<tr>
<td>IM Cu300</td>
<td>258</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>150g</td>
<td>Stäbe (rods), Ø 5x100 mm (Copper)</td>
</tr>
<tr>
<td>CI NS41001</td>
<td>333</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>23g</td>
<td>Chip (Copper)</td>
</tr>
<tr>
<td>H 058</td>
<td>390</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>1</td>
<td>Pin, Ø 7x50 mm (Copper)</td>
</tr>
<tr>
<td>IM Ni-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1260</td>
<td>31</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>100g</td>
<td>Chip (Rein-Nickel)</td>
</tr>
<tr>
<td>IM Ni-2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>128</td>
<td>149</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>100g</td>
<td>Chip (Rein-Nickel)</td>
</tr>
<tr>
<td>H 099</td>
<td>8.4</td>
<td>1.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>50g</td>
<td>2g Würfel (cube) (Nickel)</td>
</tr>
<tr>
<td>H 025A</td>
<td><0.1</td>
<td>-</td>
<td>-</td>
<td>0.26</td>
<td>-</td>
<td>1.22</td>
<td>-</td>
<td>ug/g</td>
<td>1</td>
<td>Scheibe (disc), Ø 26x9 mm (Aluminium)</td>
</tr>
<tr>
<td>H 025B</td>
<td><0.1</td>
<td>-</td>
<td>-</td>
<td>0.26</td>
<td>-</td>
<td>1.22</td>
<td>-</td>
<td>ug/g</td>
<td>1</td>
<td>Pin, Ø 8x50 mm (Aluminium)</td>
</tr>
<tr>
<td>H 329</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30.0</td>
<td>-</td>
<td>ug/g</td>
<td>50g</td>
<td>Chip (3% AlMg)</td>
</tr>
<tr>
<td>H 330</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>32.0</td>
<td>-</td>
<td>ug/g</td>
<td>1</td>
<td>Scheibe (disc), Ø 55x30 mm (3% AlMg)</td>
</tr>
<tr>
<td>H 338</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.2</td>
<td>-</td>
<td>ug/g</td>
<td>100</td>
<td>Scheiben (discs), Ø 7x1 mm Titan (Titanium)</td>
</tr>
<tr>
<td>H 024B</td>
<td>608</td>
<td>117</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>10g</td>
<td>0.4g Würfel (cube) (Titanium)</td>
</tr>
<tr>
<td>H 024C</td>
<td>608</td>
<td>117</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>5g</td>
<td>0.2g Würfel (cube) (Titanium)</td>
</tr>
<tr>
<td>3 352c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>49.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>20g</td>
<td>Plättchen (plates), 3x3x1.5mm Titan, unleg. (Unalloyed Titanium)</td>
</tr>
<tr>
<td>3 2452</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>62.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>10g</td>
<td>Chip (Titanium)</td>
</tr>
<tr>
<td>3 2453</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>114</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>10g</td>
<td>Chip (Titanium)</td>
</tr>
<tr>
<td>3 2454</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>211</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>10g</td>
<td>Chip (Titanium)</td>
</tr>
<tr>
<td>GB 02601</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>35g</td>
<td>Chip (Titanium, unleg. (Unalloyed Titanium))</td>
</tr>
<tr>
<td>GB 02604</td>
<td>2730</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>20g</td>
<td>Streifen (strips), 100x3x1 mm Titan, unleg. (Unalloyed Titanium)</td>
</tr>
<tr>
<td>GB 02605</td>
<td>3160</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>20g</td>
<td>Streifen (discs), Ø 18x2 mm Titan, unleg. (Unalloyed Titanium)</td>
</tr>
<tr>
<td>GB 02602</td>
<td>-</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>35g</td>
<td>Chip 5A14V Titan-Leg. (Titanium Alloy)</td>
</tr>
<tr>
<td>CI NS7003</td>
<td>1190</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>35g</td>
<td>Streifen (strips), 100x3x1 mm 5A14V Titan-Leg. (Titanium Alloy)</td>
</tr>
<tr>
<td>H 059A</td>
<td>1750</td>
<td>172</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>20g</td>
<td>Scheibe (disc), Ø 2x9 mm 6A14V Titan-Leg. (Titanium Alloy)</td>
</tr>
<tr>
<td>H 059B</td>
<td>1750</td>
<td>172</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>5g</td>
<td>0.2g Würfel (cube) 6A14V Titan-Leg. (Titanium Alloy)</td>
</tr>
<tr>
<td>H 023A</td>
<td>14.7</td>
<td><0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>1</td>
<td>Scheibe (disc), Ø 26x9 mm Molybdän (Molybdenum)</td>
</tr>
<tr>
<td>H 023B</td>
<td>14.7</td>
<td><0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>25g</td>
<td>1g Würfel (cube) Molybdän (Molybdenum)</td>
</tr>
<tr>
<td>H 055</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>1</td>
<td>Pin, Ø 30x9 mm Blei (Lead)</td>
</tr>
<tr>
<td>VS F8/1</td>
<td>250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>100g</td>
<td>Pulver (powder) Chrom (Chromium)</td>
</tr>
<tr>
<td>IM 10/1</td>
<td>11.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>60g</td>
<td>Pin, Ø 6x100 mm Silber (Silver)</td>
</tr>
<tr>
<td>IM 100/1</td>
<td>109.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>60g</td>
<td>Pin, Ø 6x100 mm AgCu-Leg. (AgCu-Alloy)</td>
</tr>
<tr>
<td>IM 2N</td>
<td>2.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>195g</td>
<td>Stäbe (rods), Ø 3.9x100 mm Silber (Silver)</td>
</tr>
<tr>
<td>IM 150N</td>
<td>155.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>100g</td>
<td>Pellets, Ø 5.5x5 mm Silber (Silver)</td>
</tr>
<tr>
<td>VS F29/2</td>
<td>4.69</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ug/g</td>
<td>% 100g</td>
<td>Pulver (powder) Mangan (Manganese)</td>
</tr>
</tbody>
</table>
O, N, H, C + S in Nichteisen-Metallen (Non-Ferrous Metals)

<table>
<thead>
<tr>
<th>RM</th>
<th>C</th>
<th>O</th>
<th>N</th>
<th>H</th>
<th>Einheit</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit</td>
<td>g/g</td>
</tr>
<tr>
<td>AR 147</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>26</td>
<td>100g</td>
</tr>
<tr>
<td>AR 148</td>
<td>49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>100g</td>
</tr>
<tr>
<td>AR 149</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>100g</td>
</tr>
</tbody>
</table>

6 HPm1 (1400) 15 (70) 270 5 1g Pulver (Powder) Nickel

Organische Standards und Reagenzien (Organic Standards and Reagents)

<table>
<thead>
<tr>
<th>RM</th>
<th>C</th>
<th>H</th>
<th>N</th>
<th>O</th>
<th>S</th>
<th>Cl</th>
<th>Br</th>
<th>I</th>
<th>F</th>
<th>F</th>
<th>Einheit</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit</td>
<td>g/g</td>
</tr>
<tr>
<td>AR 2029</td>
<td>99.99</td>
<td>-</td>
<td>50g</td>
</tr>
<tr>
<td>AR AE2003</td>
<td>94.34</td>
<td>5.66</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2039</td>
<td>94.46</td>
<td>6.54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2014</td>
<td>93.71</td>
<td>6.29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2040</td>
<td>52.99</td>
<td>9.93</td>
<td>41.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR 1053</td>
<td>71.09</td>
<td>6.71</td>
<td>10.36</td>
<td>11.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100g</td>
</tr>
<tr>
<td>AR AE2001</td>
<td>40.44</td>
<td>7.92</td>
<td>15.72</td>
<td>35.92</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2005</td>
<td>51.79</td>
<td>5.07</td>
<td>20.14</td>
<td>23.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2012</td>
<td>42.87</td>
<td>2.40</td>
<td>16.66</td>
<td>38.07</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2015</td>
<td>52.17</td>
<td>4.39</td>
<td>20.29</td>
<td>23.16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2016</td>
<td>67.01</td>
<td>7.31</td>
<td>7.82</td>
<td>17.86</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2020</td>
<td>74.47</td>
<td>4.86</td>
<td>9.65</td>
<td>11.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2030</td>
<td>49.48</td>
<td>5.19</td>
<td>28.85</td>
<td>16.48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR 2092</td>
<td>41.09</td>
<td>5.52</td>
<td>9.59</td>
<td>43.79</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50g</td>
</tr>
<tr>
<td>AR AE2034</td>
<td>39.65</td>
<td>1.90</td>
<td>13.20</td>
<td>45.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2038</td>
<td>20.00</td>
<td>6.71</td>
<td>46.64</td>
<td>26.64</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2041</td>
<td>65.30</td>
<td>3.43</td>
<td>9.52</td>
<td>21.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2004</td>
<td>68.85</td>
<td>4.95</td>
<td>-</td>
<td>26.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2031</td>
<td>76.00</td>
<td>12.73</td>
<td>-</td>
<td>11.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR 2021</td>
<td>42.10</td>
<td>6.48</td>
<td>-</td>
<td>51.91</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50g</td>
</tr>
<tr>
<td>AR AE2035</td>
<td>29.99</td>
<td>5.03</td>
<td>11.66</td>
<td>26.63</td>
<td>26.69</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2036</td>
<td>41.85</td>
<td>4.68</td>
<td>16.26</td>
<td>18.58</td>
<td>18.62</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2037</td>
<td>51.78</td>
<td>5.07</td>
<td>20.12</td>
<td>11.49</td>
<td>11.52</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2017</td>
<td>3.11</td>
<td>14.43</td>
<td>49.44</td>
<td>33.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2011</td>
<td>68.25</td>
<td>5.73</td>
<td>-</td>
<td>-</td>
<td>26.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2007</td>
<td>47.40</td>
<td>5.47</td>
<td>13.82</td>
<td>-</td>
<td>15.82</td>
<td>17.49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2009</td>
<td>53.70</td>
<td>3.22</td>
<td>-</td>
<td>20.44</td>
<td>-</td>
<td>22.64</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2010</td>
<td>35.58</td>
<td>1.49</td>
<td>13.83</td>
<td>31.60</td>
<td>-</td>
<td>17.50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2019</td>
<td>25.30</td>
<td>-</td>
<td>-</td>
<td>74.70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2008</td>
<td>41.82</td>
<td>2.51</td>
<td>-</td>
<td>15.92</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>39.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2021</td>
<td>33.90</td>
<td>2.03</td>
<td>-</td>
<td>12.90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>51.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2013</td>
<td>60.01</td>
<td>3.59</td>
<td>-</td>
<td>22.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2018</td>
<td>50.80</td>
<td>3.20</td>
<td>7.41</td>
<td>8.46</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
<tr>
<td>AR AE2022</td>
<td>82.42</td>
<td>5.76</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11.81</td>
<td>-</td>
<td>-</td>
<td>1g</td>
</tr>
</tbody>
</table>

Notes:
- **Pack.:** Einheit (Units)
- **Form:** Kupfer (Copper), Titan (Titanium), Zirkonium (Zirconium)
C, H, N, S in Pflanzenmatrix (Plant Matrices)

<table>
<thead>
<tr>
<th>RM</th>
<th>C</th>
<th>H</th>
<th>N</th>
<th>S</th>
<th>Einheit</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR 2016</td>
<td>45.18</td>
<td>5.69</td>
<td>7.98</td>
<td>0.37</td>
<td>%</td>
<td>30g</td>
</tr>
<tr>
<td>AR 2017</td>
<td>50.29</td>
<td>6.33</td>
<td>10.95</td>
<td>0.96</td>
<td>%</td>
<td>30g</td>
</tr>
<tr>
<td>AR 2018</td>
<td>45.77</td>
<td>5.42</td>
<td>3.37</td>
<td>0.20</td>
<td>%</td>
<td>30g</td>
</tr>
<tr>
<td>AR 2019</td>
<td>43.17</td>
<td>5.76</td>
<td>2.74</td>
<td>0.17</td>
<td>%</td>
<td>30g</td>
</tr>
<tr>
<td>AR 2020</td>
<td>44.25</td>
<td>5.78</td>
<td>1.86</td>
<td>0.17</td>
<td>%</td>
<td>30g</td>
</tr>
<tr>
<td>AR 2025</td>
<td>45.35</td>
<td>5.44</td>
<td>1.91</td>
<td>0.15</td>
<td>%</td>
<td>30g</td>
</tr>
<tr>
<td>AR 2026</td>
<td>47.76</td>
<td>5.72</td>
<td>2.06</td>
<td>0.16</td>
<td>%</td>
<td>30g</td>
</tr>
<tr>
<td>AR 2027</td>
<td>46.68</td>
<td>5.57</td>
<td>1.50</td>
<td>0.14</td>
<td>%</td>
<td>30g</td>
</tr>
<tr>
<td>AR 2028</td>
<td>44.70</td>
<td>5.88</td>
<td>1.36</td>
<td>0.12</td>
<td>%</td>
<td>30g</td>
</tr>
</tbody>
</table>

Einheit
- %

Pack.
- 30g

Einzelheiten
- Sojabohnen (Soy Bean Meal)
- Maisgluten (Corn Glutin)
- Alflafa, Luzerne (Alfalfa)
- Weizenmehl (Wheat Meal)
- Roggenmehl (Rye Flour)
- Maismehl (Corn Meal)
- Hafermehl (Oat Meal)
- Gerste (Barley)
- Reis (Rice)